R Ensemble Competition
Ensemble Competition
Winner is stacking at .95 accuracy
2nd place was boosting with .943 accuracy
3rd place was bagging with .942 accuracy
Bagging
Call:
summary.resamples(object = bagging_results)
Models: treebag, rf
Number of resamples: 30
Accuracy
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
treebag 0.8000000 0.8857143 0.9166667 0.9211407 0.9640523 0.9722222 0
rf 0.8333333 0.8946078 0.9420168 0.9280781 0.9712185 1.0000000 0
Kappa
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
treebag 0.5648313 0.7552448 0.8208228 0.8265147 0.9216460 0.9407895 0
rf 0.6504854 0.7801430 0.8722003 0.8412055 0.9350695 1.0000000 0
Boosting
Call:
summary.resamples(object = boosting_results)
Models: c5.0, gbm
Number of resamples: 30
Accuracy
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
c5.0 0.8857143 0.914881 0.9428571 0.9437877 0.9712185 1 0
gbm 0.8571429 0.914881 0.9436508 0.9440881 0.9714286 1 0
Kappa
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
c5.0 0.7388060 0.8173731 0.8745394 0.8750652 0.9353050 1 0
gbm 0.6788991 0.8142060 0.8776224 0.8753566 0.9375755 1 0
Stacking
A glm ensemble of 5 base models: lda, rpart, glm, knn, svmRadial
Ensemble results:
Generalized Linear Model
1053 samples
5 predictor
2 classes: 'bad', 'good'
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 947, 947, 948, 948, 947, 948, ...
Resampling results:
Accuracy Kappa
0.9509604 0.8935122